Exercise 36

Find a function f such that $f(3)=2$ and

$$
\left(t^{2}+1\right) f^{\prime}(t)+[f(t)]^{2}+1=0 \quad t \neq 1
$$

[Hint: Use the addition formula for $\tan (x+y)$ on Reference Page 2.]

Solution

Solving for $f^{\prime}(t)$ gives

$$
f^{\prime}(t)=-\frac{[f(t)]^{2}+1}{t^{2}+1} .
$$

This differential equation is separable, which means we can solve for $f(t)$ by bringing the terms with f to the left and the constants and terms with t to the right and then integrating both sides.

$$
\begin{aligned}
\frac{d f}{d t} & =-\frac{[f(t)]^{2}+1}{t^{2}+1} \\
d f & =-\frac{[f(t)]^{2}+1}{t^{2}+1} d t \\
\frac{d f}{[f(t)]^{2}+1} & =-\frac{d t}{t^{2}+1} \\
\int \frac{d f}{[f(t)]^{2}+1} & =\int-\frac{d t}{t^{2}+1}
\end{aligned}
$$

Recall that

$$
\int \frac{d x}{x^{2}+1}=\tan ^{-1} x+C
$$

So

$$
\begin{aligned}
\tan ^{-1} f & =-\tan ^{-1} t+C \\
f(t) & =\tan \left(-\tan ^{-1} t+C\right) .
\end{aligned}
$$

Because $f(3)=2$, we can figure out what C is.

$$
\begin{aligned}
f(3)=\tan \left(-\tan ^{-1} 3+C\right) & =2 \\
-\tan ^{-1} 3+C & =\tan ^{-1} 2 \\
C & =\tan ^{-1} 2+\tan ^{-1} 3
\end{aligned}
$$

Therefore,

$$
f(t)=\tan \left(\tan ^{-1} 2+\tan ^{-1} 3-\tan ^{-1} t\right) .
$$

